Indian Statistical Institute, Bangalore

M. Math. Second Year Second Semester

Operator Theory

Mid-term Examination

Maximum marks: 100

Date: 17-02-2017 Time: 3 hours

- (1) Let \mathcal{H} be a Hilbert space of dimension greater than 1. Show that the Banach space $\mathcal{B}(\mathcal{H})$ of bounded operators on \mathcal{H} , with operator norm, is not a Hilbert space. [15]
- (2) Let T be a normal operator on a Hilbert space. Show that $\lambda \in \mathbb{C}$ is an eigenvalue of T (i.e., $Tx = \lambda x$ for some $x \neq 0$) if and only if $\bar{\lambda}$ is an eigenvalue of T^* . Show that eigen-vectors corresponding to distinct eigenvalues of T are orthogonal. [15]
- (3) Let P be an orthogonal projection on a Hilbert space \mathcal{H} . Show that the spectrum of P is contained in $\{0, 1\}$. [10]
- (4) Show that the unilateral shift on l^2 is not compact. [10]
- (5) Let \mathcal{A} be a commutative unital Banach algebra. Define the Gelfand dual $\hat{\mathcal{A}}$ of \mathcal{A} . Show that maximal ideals of \mathcal{A} are in one to one correspondence with $\hat{\mathcal{A}}$. [20]
- (6) Let \mathcal{A} be a unital Banach algebra and let $\rho(x)$ be the resolvent set for an element x of \mathcal{A} . Let ϕ a continuous linear functional \mathcal{A} . Show that the map $\lambda \mapsto \phi((x-\lambda)^{-1})$ is a complex differentiable function on $\rho(x)$. [20]
- (7) Let \mathcal{A}, \mathcal{B} be unital C^* -algebras. Let $\pi : \mathcal{A} \to \mathcal{B}$ be a unital *-homomorphism. Show that $\sigma(\pi(a)) \subseteq \sigma(a)$ for $a \in \mathcal{A}$. Using this or otherwise show that $\|\pi(a)\| \leq \|a\| \quad \forall a \in \mathcal{A}$. [20]